Cu(bipy)2+/TEMPO-catalyzed oxidation of alcohols: radical or nonradical mechanism?

نویسندگان

  • Paola Belanzoni
  • Carine Michel
  • Evert Jan Baerends
چکیده

In the oxidation of alcohols with TEMPO as catalyst, the substrate has alternatively been postulated to be oxidized but uncoordinated TEMPO(+) (Semmelhack) or Cu-coordinated TEMPO(•) radical (Sheldon). The reaction with the Cu(bipy)(2+)/TEMPO cocatalyst system has recently been claimed, on the basis of DFT calculations, to not be a radical reaction but to be best viewed as electrophilic attack on the alcohol C-H(α) bond by coordinated TEMPO(+). This mechanism combines elements of the Semmelhack mechanism (oxidation of TEMPO to TEMPO(+)) and the Sheldon proposal ("in the coordination sphere of Cu"). The recent proposal has been challenged on the basis of DFT calculations with a different functional, which were reported to lead to a radical mechanism. We carefully examine the results for the two functionals and conclude from both the calculated energetics and from an electronic structure analysis that the results of the two DFT functionals are consistent and that both lead to the proposed mechanism with TEMPO not acting as radical but as (coordinated) positive ion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of copper(I)/TEMPO-catalyzed aerobic alcohol oxidation.

Homogeneous Cu/TEMPO catalyst systems (TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl) have emerged as some of the most versatile and practical catalysts for aerobic alcohol oxidation. Recently, we disclosed a (bpy)Cu(I)/TEMPO/NMI catalyst system (NMI = N-methylimidazole) that exhibits fast rates and high selectivities, even with unactivated aliphatic alcohols. Here, we present a mechanistic inve...

متن کامل

Copper(I)/ABNO-catalyzed aerobic alcohol oxidation: alleviating steric and electronic constraints of Cu/TEMPO catalyst systems.

Cu/TEMPO catalyst systems promote efficient aerobic oxidation of sterically unhindered primary alcohols and electronically activated substrates, but they show reduced reactivity with aliphatic and secondary alcohols. Here, we report a catalyst system, consisting of ((MeO)bpy)Cu(I)(OTf) and ABNO ((MeO)bpy = 4,4'-dimethoxy-2,2'-bipyridine; ABNO = 9-azabicyclo[3.3.1]nonane N-oxyl), that mediates a...

متن کامل

Mechanism of alcohol oxidation mediated by copper(II) and nitroxyl radicals.

2,2'-Bipyridine-ligated copper complexes, in combination with TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl), are highly effective catalysts for aerobic alcohol oxidation. Considerable uncertainty and debate exist over the mechanism of alcohol oxidation mediated by Cu(II) and TEMPO. Here, we report experimental and density functional theory (DFT) computational studies that distinguish among numer...

متن کامل

Photooxidation of alcohols by a porphyrin/quinone/TEMPO system.

Photooxidation of alcohols to the corresponding aldehydes with a porphyrin/quinone/TEMPO (TEMPO=2,2,6,6-tetramethyl-1-piperidinyloxy free radical) system is described. This photoreaction is a combination of a photoinduced electron transfer from the porphyrin to the quinone and a TEMPO-catalyzed oxidation of alcohols triggered by one electron oxidation. The rates of oxidation were in the order o...

متن کامل

Selective, catalytic aerobic oxidation of alcohols using CuBr(2) and bifunctional triazine-based ligands containing both a bipyridine and a TEMPO group.

Three novel, bifunctional triazine-based ligands, namely , and , containing both a TEMPO and a bipyridine moiety have been synthesized. These bpy/TEMPO-based molecules have been used as catalyst precursors for the copper-catalyzed aerobic oxidation of alcohols to aldehydes and ketones, in the presence of tert-BuOK as co-catalyst. The complexes obtained in situ from ligands and with copper(II) b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inorganic chemistry

دوره 50 23  شماره 

صفحات  -

تاریخ انتشار 2011